Genus 3 curves and the inverse Galois problem

Samuele Anni
joint with Pedro Lemos and Samir Siksek

University of Warwick

Modular Forms and Curves of Low Genus: Computational Aspects
ICERM, Providence, 29th September 2015
1. The inverse Galois problem

2. Abelian varieties and the inverse Galois problem

3. The main result

4. An “algorithm” for the genus 3 case
The inverse Galois problem

Let G be a finite group. Does there exist a Galois extension K/\mathbb{Q} such that $\text{Gal}(K/\mathbb{Q}) \cong G$?

For example, let G be S_n, the symmetric group of n letters. Then G is a Galois group over \mathbb{Q}. Moreover, for all positive integer n we can realize G as the Galois group of the splitting field $x^n - x - 1$.

Galois representations may answer the inverse Galois problem for finite linear groups.
1. **The inverse Galois problem**

2. **Abelian varieties and the inverse Galois problem**
 - Back to the inverse Galois problem

3. **The main result**

4. **An “algorithm” for the genus 3 case**
Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and let $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Let A be a principally polarized abelian variety over \mathbb{Q} of dimension d.

Let ℓ be a prime and $A[\ell]$ the ℓ-torsion subgroup:

$$A[\ell] := \{ P \in A(\overline{\mathbb{Q}}) \mid [\ell]P = 0 \} \cong (\mathbb{Z}/\ell\mathbb{Z})^{2d}.$$

$A[\ell]$ is a $2d$-dimensional \mathbb{F}_ℓ-vector space, as well as a $G_{\mathbb{Q}}$-module.
The polarization induces a symplectic pairing, the mod ℓ Weil pairing on $A[\ell]$, which is a bilinear, alternating, non-degenerate pairing:

$$\langle \ , \ \rangle : A[\ell] \times A[\ell] \to \mu_\ell$$

that is Galois invariant: $\forall \sigma \in G_\mathbb{Q}, \forall v, w \in A[\ell]$,

$$\langle \sigma v, \sigma w \rangle = \chi(\sigma) \langle v, w \rangle,$$

where $\chi : G_\mathbb{Q} \to \mathbb{F}_\ell^\times$ is the mod ℓ cyclotomic character.

$(A[\ell], \langle \ , \ \rangle)$ is a symplectic \mathbb{F}_ℓ-vector space of dimension $2d$. This gives a representation

$$\bar{\rho}_{A,\ell} : G_\mathbb{Q} \to \text{GSp}(A[\ell], \langle \ , \ \rangle) \cong \text{GSp}_{2d}(\mathbb{F}_\ell).$$
Theorem (Serre)

Let A be a principally polarized abelian variety of dimension d, defined over \mathbb{Q}. Assume that $d = 2, 6$ or d is odd and, furthermore, assume that $\text{End}_\mathbb{Q}(A) = \mathbb{Z}$. Then there exists a bound B_A such that for all primes $\ell > B_A$ the representation $\bar{\rho}_{A,\ell}$ is surjective.

The conclusion of the theorem is known to be false for general d (counterexample by Mumford for $d = 4$).
Open Question

Given d as in the theorem, is there a uniform bound B_d depending only on d, such that for all principally polarized abelian varieties A over \mathbb{Q} of dimension d with $\text{End}_\mathbb{Q}(A) = \mathbb{Z}$, and all $\ell > B_d$, the representation $\overline{\rho}_{A,\ell}$ is surjective?

For elliptic curves an affirmative answer is expected, and this is known as Serre’s Uniformity Question.

Much easier for semistable elliptic curves:

Theorem (Serre)

Let E/\mathbb{Q} be a semistable elliptic curve, and $\ell \geq 11$ be a prime. Then $\overline{\rho}_{E,\ell}$ is surjective.
The Galois representation attached to the ℓ-torsion of the elliptic curve $y^2 + y = x^3 - x$ is surjective for all prime ℓ. This gives a realization $\text{GL}_2(\mathbb{F}_\ell)$ as Galois group for all ℓ.

Let C be the genus 2 hyperelliptic curve given by $y^2 = x^5 - x + 1$ and let J denote its Jacobian. Dieulefait proved that $\bar{\rho}_{J,\ell}$ is surjective for all odd prime ℓ. This gives a realization $\text{GSp}_4(\mathbb{F}_\ell)$ as Galois group for all odd ℓ.

What about genus 3 curves?
1 **The inverse Galois problem**

2 **Abelian varieties and the inverse Galois problem**

3 **The main result**
 - Transvection
 - Ingredients of the proof of the main theorem
 - Idea of the proof

4 **An “algorithm” for the genus 3 case**
Theorem (A., Lemos and Siksek)

Let A be a semistable principally polarized abelian variety of dimension $d \geq 1$ over \mathbb{Q} and let $\ell \geq \max(5, d + 2)$ be prime. Suppose the image of $\bar{\rho}_{A, \ell} : G_{\mathbb{Q}} \to \text{GSp}_{2d}(\overline{\mathbb{F}}_{\ell})$ contains a transvection. Then $\bar{\rho}_{A, \ell}$ is either reducible or surjective.
Theorem (A., Lemos and Siksek)

Let A be a semistable principally polarized abelian variety of dimension $d \geq 1$ over \mathbb{Q} and let $\ell \geq \max(5, d + 2)$ be prime. Suppose the image of $\overline{\rho}_{A,\ell} : G_\mathbb{Q} \to \text{GSp}_{2d}(\mathbb{F}_\ell)$ contains a transvection. Then $\overline{\rho}_{A,\ell}$ is either reducible or surjective.
Transvection

Definition

Let (V, \langle , \rangle) be a finite-dimensional symplectic vector space over \mathbb{F}_ℓ. A **transvection** is an element $T \in \text{GSp}(V, \langle , \rangle)$ which fixes a hyperplane $H \subset V$.

Therefore, a transvection is a unipotent element $\sigma \in \text{GSp}(V, \langle , \rangle)$ such that $\sigma - I$ has rank 1.
When does $\overline{\rho}_{A,\ell}(G_{\mathbb{Q}})$ contain a transvection?

Let $q \neq \ell$ be a prime and suppose that the following two conditions are satisfied:

- the special fibre of the Néron model for A at q has toric dimension 1;
- $\ell \nmid \#\Phi_q$, where Φ_q is the group of connected components of the special fibre of the Néron model at q.

Then the image of $\overline{\rho}_{A,\ell}$ contains a transvection (Hall).
When does $\overline{\rho}_{A,\ell}(G_{\mathbb{Q}})$ contain a transvection?

Let C/\mathbb{Q} be a hyperelliptic curve of genus d:

$$C : y^2 = f(x)$$

where $f \in \mathbb{Z}[x]$ is a squarefree polynomial.

Let p be an odd prime not dividing the leading coefficient of f such that f modulo p has one root in $\overline{\mathbb{F}}_p$ having multiplicity precisely 2, with all other roots simple.

Then the Néron model of the Jacobian at p has toric dimension 1 (Hall).
In the proof of this theorem we rely on:

- the classification due to Arias-de-Reyna, Dieulefait and Wiese of subgroups of $\text{GSp}_{2d}(\mathbb{F}_\ell)$ containing a transvection;

- results of Raynaud on the image of the inertia subgroup.
Classification of subgroups of $GSp_{2d}(\mathbb{F}_\ell)$ with a transvection

Theorem (Arias-de-Reyna, Dieulefait and Wiese)

Let $\ell \geq 5$ be a prime and let V a symplectic \mathbb{F}_ℓ-vector space of dimension $2d$. Any subgroup G of $GSp(V)$ which contains a transvection satisfies one of the following:

1. There is a non-trivial proper G-stable subspace $W \subset V$.
2. There are non-singular symplectic subspaces $V_i \subset V$ with $i = 1, \ldots, h$, of dimension $2m < 2d$ and a homomorphism $\phi : G \to S_h$ such that $V = \bigoplus_{i=1}^h V_i$ and $\sigma(V_i) = V_{\phi(\sigma)(i)}$ for $\sigma \in G$ and $1 \leq i \leq h$. Moreover, $\phi(G)$ is a transitive subgroup of S_h.
3. $Sp(V) \subseteq G$.

We apply this to $G = \overline{\rho}_{A,\ell}(G_{\mathbb{Q}})$ where A and ℓ are as in the main theorem. If $Sp_{2d}(\mathbb{F}_\ell) \subseteq G$ then $G = GSp_{2d}(\mathbb{F}_\ell)$, since the mod ℓ cyclotomic character is surjective.
The main result

Ingredients of the proof of the main theorem

Inertia and a theorem of Raynaud

Theorem (Raynaud)

Let A be an abelian variety over \mathbb{Q}. Let ℓ be a prime of semistable reduction for A. Regard $A[\ell]$ as an I_ℓ-module and let V be a Jordan-Hölder factor of dimension n over \mathbb{F}_ℓ. Let $\psi_n : I_\ell \to \mathbb{F}_\ell^\times$ be a fundamental character of level n. Then V has the structure of a 1-dimensional \mathbb{F}_ℓ^n-vector space and the action of I_ℓ on it is given by a character $\varpi : I_\ell \to \mathbb{F}_\ell^n$, where $\varpi = \psi_n \sum_{i=0}^{n-1} a_i \ell^i$ with $a_i = 0$ or 1.
Idea of the proof

Denote $\bar{\rho} = \bar{\rho}_{A, \ell}$. Let $G = \bar{\rho}(G_{\mathbb{Q}}) \subseteq \text{GSp}_{2d}(\mathbb{F}_{\ell})$.

Since G contains a transvection, it is sufficient to show that the induced case does not arise.

Suppose otherwise. Write $V = \bigoplus_{i=1}^{h} V_i$ where V_i are non-singular symplectic subspaces of dimension $2m < 2d$. Then there is some $\phi : G \to S_h$ with transitive image such that $\sigma(V_i) = V_{\phi(\sigma)(i)}$. Let

$$
\begin{array}{ccc}
G_{\mathbb{Q}} & \xrightarrow{\pi} & G \\
\bar{\rho} & \xrightarrow{\phi} & S_h
\end{array}
$$
Let $H = \ker(\pi)$. Then $H = G_K$ for some number field K/\mathbb{Q}. Moreover, $\overline{\rho}|_{G_K}$ is reducible as the V_i are stable under the action of G_K.

In the proof we show that for $\ell \geq \max(5, d + 2)$ the extension K/\mathbb{Q} is unramified at the finite places, and thus K has discriminant ± 1

$\Rightarrow K = \mathbb{Q} \Rightarrow \pi$ is trivial \Rightarrow contradiction

The bound on ℓ is obtained considering the image of inertia subgroup and applying Raynaud’s result.
1 THE INVERSE GALOIS PROBLEM

2 ABELIAN VARIETIES AND THE INVERSE GALOIS PROBLEM

3 THE MAIN RESULT

4 AN “ALGORITHM” FOR THE GENUS 3 CASE
 - 1-dimensional Jordan–Hölder factors
 - 2-dimensional Jordan–Hölder factors
 - 3-dimensional Jordan–Hölder factors
 - Example
We now let A/\mathbb{Q} be a **principally polarized abelian threefold**.

Assumptions

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>A is semistable;</td>
</tr>
<tr>
<td>(B)</td>
<td>$\ell \geq 5$;</td>
</tr>
<tr>
<td>(C)</td>
<td>There is a prime q such that the special fibre of the Néron model for A at q has toric dimension 1.</td>
</tr>
<tr>
<td>(D)</td>
<td>ℓ does not divide $\gcd{q \cdot #\Phi_q : q \in S}$, where S is the set of primes q satisfying (C) and Φ_q is the group of connected components of the special fibre of the Néron model of A at q.</td>
</tr>
</tbody>
</table>

Under these assumptions the image of $\overline{\rho}_{A,\ell}$ contains a transvection. Then $\overline{\rho}_{A,\ell}$ is either reducible or surjective.
“Algorithm”

Practical method which should, in most cases, produce a small integer B (depending on A) such that for $\ell \mid B$, the representation $\bar{\rho}_{A,\ell}$ is irreducible and, hence, surjective.

We will apply this procedure to the Jacobian of the hyperelliptic curve:

$$C : y^2 + (x^4 + x^3 + x + 1)y = x^6 + x^5$$

(look at the glassboard for the computations).
Let \(\chi : G_Q \to \mathbb{F}_\ell^\times \) denote the mod \(\ell \) cyclotomic character.

We will study the Jordan–Hölder factors \(W \) of the \(G_Q \)-module \(A[\ell] \). By the determinant of such a \(W \) we mean the determinant of the induced representation \(G_Q \to \text{GL}(W) \).

Lemma

Any Jordan–Hölder factor \(W \) of the \(G_Q \)-module \(A[\ell] \) has determinant \(\chi^r \) for some \(0 \leq r \leq \dim(W) \).
Weil polynomials

From a prime $p \neq \ell$ of good reduction for A, we will denote by

$$P_p(x) = x^6 + \alpha_p x^5 + \beta_p x^4 + \gamma_p x^3 + p\beta_p x^2 + p^2 \alpha_p + p^3 \in \mathbb{Z}[x]$$

the characteristic polynomial of Frobenius $\sigma_p \in G_\mathbb{Q}$ at p acting on the Tate module $T_\ell(A)$ (also known as the Weil polynomial of A mod p). The polynomial P_p is independent of ℓ.

Its roots in $\overline{\mathbb{F}}_\ell$ have the form u, v, w, p/u, p/v, p/w.
1-dimensional Jordan–Hölder factors

Let T be a non-empty set of primes of good reduction for A. Let

$$B_1(T) = \gcd\{p \cdot \# A(F_p) : p \in T\}.$$

Lemma

Suppose $\ell \nmid B_1(T)$. The $G_{\mathbb{Q}}$-module $A[\ell]$ does not have any 1-dimensional or 5-dimensional Jordan–Hölder factors.
Suppose the \mathbb{G}_Q-module $A[\ell]$ does not have any 1-dimensional Jordan–Hölder factors, but has either a 2-dimensional or 4-dimensional irreducible subspace U. Then $A[\ell]$ has a 2-dimensional Jordan–Hölder factor W with determinant χ.
Let N be the conductor of A. Let W be a 2-dimensional Jordan–Hölder factor of $A[\ell]$ with determinant χ. The representation

$$\tau : \mathbb{G}_Q \to \text{GL}(W) \cong \text{GL}_2(\mathbb{F}_\ell)$$

is odd (as the determinant is χ), irreducible (as W is a Jordan–Hölder factor) and 2-dimensional. By Serre’s modularity conjecture (Khare, Wintenberger, Dieulefait, Kisin Theorem), this representation is modular:

$$\tau \cong \overline{\rho}_f,\ell$$

it is equivalent to the mod ℓ representation attached to a newform f of level $M \mid N$ and weight 2.
Let O_f be the ring of integers of the number field generated by the Hecke eigenvalues of f. Then there is a prime $\lambda \mid \ell$ of O_f such that for all primes $p \nmid \ell N$,

$$\text{Tr}(\tau(\sigma_p)) \equiv c_p(f) \pmod{\lambda}$$

where $\sigma_p \in G_{\mathbb{Q}}$ is a Frobenius element at p and $c_p(f)$ is the p-th Hecke eigenvalue of f.

As W is a Jordan–Hölder factor of $A[\ell]$ we see that $x^2 - c_p(f)x + p$ is a factor modulo λ of P_p.
Now let $H_{M,p}$ be the p-th Hecke polynomial for the new subspace $S_{2}^{\text{new}}(M)$ of cusp forms of weight 2 and level M. This has the form

$$H_{M,p} = \prod (x - c_{p}(g)),$$

where g runs through the newforms of weight 2 and level M. Write

$$H'_{M,p}(x) = x^{d}H_{M,p}(x + p/x) \in \mathbb{Z}[x],$$

where $d = \deg(H_{M,p}) = \dim(S_{2}^{\text{new}}(M))$.

It follows that $x^{2} - c_{p}(f)x + p$ divides $H'_{M,p}$.
Let

$$R(M, p) = \text{Res}(P_p, H'_M, p) \in \mathbb{Z},$$

where Res denotes resultant. If $R(M, p) \neq 0$ then we have a bound on ℓ.

The integers $R(M, p)$ can be very large. Given a non-empty set T of rational primes p of good reduction for A, let

$$R(M, T) = \gcd\left\{ p \cdot R(M, p) : p \in T \right\}.$$

In practice, we have found that for a suitable choice of T, the value $R(M, T)$ is fairly small.
Let

\[B_2'(T) = \text{lcm}(R(M, T)) \]

where \(M \) runs through the divisors of \(N \) such that \(\dim(S_{2}^{\text{new}}(M)) \neq 0 \), and let

\[B_2(T) = \text{lcm}(B_1(T), B_2'(T)) \]

where \(B_1(T) \) is given as before.

Lemma

Let \(T \) be a non-empty set of rational primes of good reduction for \(A \), and suppose \(\ell \nmid B_2(T) \). Then \(A[\ell] \) does not have 1-dimensional Jordan–Hölder factors, and does not have irreducible 2- or 4-dimensional subspaces.
We fail to bound \(\ell \) in the above lemma if \(R(M, p) = 0 \) for all primes \(p \) of good reduction.

Here are two situations where this can happen:

- Suppose \(A \cong_{\mathbb{Q}} E \times A' \) where \(E \) is an elliptic curve and \(A' \) an abelian surface. Let \(M \mid N \) be the conductor of the elliptic curve, and \(f \) to be the newform associated to \(E \) by modularity, then \(x^2 - c_p(f)x + p \) is a factor of \(P_p(x) \Rightarrow R(M, p) = 0 \) for all \(p \nmid N \).

- Suppose \(A \) is of \(\text{GL}_2 \)-type. Let \(f \) be the corresponding eigenform, then again \(x^2 - c_p(f)x + p \) is a factor of \(P_p(x) \) in \(\mathcal{O}_f[x] \) \(\Rightarrow R(M, p) = 0 \) for all \(p \nmid N \).
Note that in both these situations $\text{End}_{\mathbb{Q}}(A) \neq \mathbb{Z}$.

We expect, but are unable to prove, that if $\text{End}_{\mathbb{Q}}(A) = \mathbb{Z}$ then there will be primes p such that $R(M, p) \neq 0$.
An “algorithm” for the genus 3 case

3-dimensional Jordan–Hölder factors

Lemma

Suppose $A[\ell]$ has Jordan–Hölder filtration $0 \subset U \subset A[\ell]$ where both U and $A[\ell]/U$ are irreducible and 3-dimensional. Moreover, let u_1, u_2, u_3 be a basis for U, and let

$$G_Q \to \text{GL}_3(\mathbb{F}_\ell), \quad \sigma \mapsto M(\sigma)$$

give the action of G_Q on U with respect to this basis. Then we can extend u_1, u_2, u_3 to a symplectic basis $u_1, u_2, u_3, w_1, w_2, w_3$ for $A[\ell]$ so that the action of G_Q on $A[\ell]$ with respect to this basis is given by

$$G_Q \to \text{GSp}_6(\mathbb{F}_\ell), \quad \sigma \mapsto \begin{pmatrix} M(\sigma) & * \\ 0 & \chi(\sigma)(M(\sigma)^t)^{-1} \end{pmatrix}.$$

$$\text{det}(U) = \chi^r \text{ and } \text{det}(A[\ell]/U) = \chi^s \text{ where } 0 \leq r, s \leq 3 \text{ with } r + s = 3.$$
Let p be a prime of good reduction for A. For ease write α, β and γ for the coefficients α_p, β_p, γ_p in the equation of the Weil polynomial. Suppose $p + 1 \neq \alpha$. Let

$$\delta = \frac{-p^2\alpha + p^2 + p\alpha^2 - p\alpha - p\beta + p - \beta + \gamma}{(p - 1)(p + 1 - \alpha)} \in \mathbb{Q}, \quad \epsilon = \delta + \alpha \in \mathbb{Q}.$$

Let $g(x) = (x^3 + \epsilon x^2 + \delta x - p)(x^3 - \delta x^2 - p\epsilon x - p^2) \in \mathbb{Q}[x]$. Write k for the greatest common divisor of the numerators of the coefficients in $P_p - g$. Let

$$K_p = p(p - 1)(p + 1 - \alpha)k.$$

Then $K_p \neq 0$. Moreover, if $\ell \nmid K_p$ then $A[\ell]$ does not have a Jordan–Hölder filtration as in the previous Lemma with $\det(U) = \chi$ or χ^2.
Lemma

Let p be a prime of good reduction for A. Write α, β and γ for the coefficients α_p, β_p, γ_p in the equation of the Weil polynomial. Suppose $p^3 + 1 \neq p\alpha$. Let $\epsilon' = p\delta' + \alpha \in \mathbb{Q}$ where

$$\delta' = \frac{-p^5\alpha + p^4 + p^3\alpha^2 - p^3\beta - p^2\alpha + p\gamma + p - \beta}{(p^3 - 1)(p^3 + 1 - p\alpha)} \in \mathbb{Q}.$$

Let $g'(x) = (x^3 + \epsilon'x^2 + \delta'x - 1)(x^3 - p\delta'x^2 - p^2\epsilon'x - p^3) \in \mathbb{Q}[x]$. Write k' for the greatest common divisor of the numerators of the coefficients in $P_p - g'$. Let

$$K'_p = p(p^3 - 1)(p^3 + 1 - p\alpha)k'.$$

Then $K'_p \neq 0$. Moreover, if $\ell \nmid K'_p$ then $A[\ell]$ does not have a Jordan–Hölder filtration as in the above Lemma with $\det(U) = 1$ or χ^3.
The following theorem summarizes all the lemmas:

Theorem (A., Lemos and Siksek)

Let A and ℓ satisfy conditions (A)–(D). Let T be a non-empty set of primes of good reduction for A. Let

$$B_3(T) = \gcd(\{K_p : p \in T\}), \quad B_4(T) = \gcd(\{K'_p : p \in T\}),$$

where K_p and K'_p are defined in the last two Lemmas. Let

$$B(T) = \text{lcm}(B_2(T), B_3(T), B_4(T)).$$

If $\ell \nmid B(T)$ then $\rho_{A,\ell}$ is surjective.
Example

Theorem (A., Lemos and Siksek)

Let C/\mathbb{Q} be the following genus 3 hyperelliptic curve,

$$C : y^2 + (x^4 + x^3 + x + 1)y = x^6 + x^5.$$

and write J for its Jacobian. Let $\ell \geq 3$ be a prime. Then $\overline{\rho}_{J,\ell}(G_{\mathbb{Q}}) = \text{GSp}_6(\mathbb{F}_\ell)$.

Proof.

For $\ell \geq 5$ we apply the algorithm, look at the glassboard for the computations. For $\ell = 3$, we prove the result by direct computations.
Genus 3 curves and the inverse Galois problem

Samuele Anni
joint with Pedro Lemos and Samir Siksek

University of Warwick

Modular Forms and Curves of Low Genus: Computational Aspects
ICERM, Providence, 29th September 2015

Thanks!